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A good approximation to modelling the shape of a liquid–air meniscus advancing or
receding in a capillary tube of radius a can be constructed by balancing the curvature
of the interface with the sum of a viscous stress valid near the contact line and a
constant static pressure. This model has unique solutions for each value of the
boundary condition, i.e. the dynamic contact angle. When the meniscus recedes at very
small capillary numbers, the model predicts a critical receding velocity beyond which
a liquid layer of the receding fluid (a liquid tail) develops along the solid (see figure 4).
The length of the layer increases as the receding speed and the contact angle decrease.
This layer regime is characterized by menisci whose macroscopic curvature is " 1}a.

1. Introduction

It has been known for more than 20 years that the classical hydrodynamic
assumptions give rise to a singular non-integrable stress tensor at the moving contact
line formed by a fluid–fluid interface moving across a solid (Huh & Scriven 1971;
Dussan V. & Davis 1974). This occurs whenever fluids modelled as incompressible and
Newtonian are made to obey the no-slip condition at a rigid solid. The central
consequence of this is the impossibility of satisfying a contact angle boundary
condition at the moving contact line in the equation (discussed in §2) describing the
shape of the fluid–fluid interface.

The singularity of the classical model implies that, in some small neighbourhood of
the contact line (usually called the ‘ inner region’), new unique physics must arise.
These new mechanisms are important in a characteristic length L

i
surrounding the

contact line. This need for new mechanisms which would generate a well-posed
boundary value problem has prompted modifications of one or more of the classical
hydrodynamic assumptions within a length scale L

i
from the moving contact line

(Dussan V., Rame! & Garoff 1991; Cox 1986). Unfortunately, identifying possible
modification(s) is not a trivial matter because of the inability to experimentally probe
the very small size L

i
of the region where the classical assumptions fail.

In order to generate predictive calculations without knowledge of these unique new
physical mechanisms, models postulate that, when the capillary number (Ca3Uµ}σ,
where U is the speed of the solid relative to the contact line, µ is the viscosity and σ
is the surface tension) is small, there exists a region very near the contact line where the
fluid–fluid interface deformation by viscous forces is independent of the system
geometry and usual hydrodynamics controls the fluid motion (Cox 1986; Pismen & Nir
1982; Hocking & Rivers 1982). This region, called the ‘ intermediate region’, lies
very near the moving contact line but not so close that the classical model fails.
This notion rests on the assumption that, regardless of the macroscopic geometry,
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all flows have the same structure in the limit as the contact line is approached. This
limiting flow structure is only determined by the wedge-like geometry defined between
the solid wall and the fluid–fluid interface.

The presence of the intermediate region arises in the limit CaU 0, with Ca ln (a}L
i
)¯

O(1), where L
i

is the length scale of the inner region and a is the scale of the
macroscopic, or ‘outer ’, region, a role played here by the tube radius. In this limit,
most of the macroscopic interface looks static, with viscous deformation being
important only in the geometry-free intermediate region near the contact line (Dussan
V. et al. 1991; Marsh, Garoff & Dussan V. 1993; Chen, Rame! & Garoff 1995). The
interface shape in the intermediate region where viscous forces are large and
independent of geometry depends solely on the material system (which may introduce
additional dynamics besides the purely hydrodynamic dependence described by Ca)
and on Ca. Thus, the interface shape in this region constitutes a dynamic material
property which may be used to form a boundary condition for the macroscopic
interface shape in any geometry. In this way, the interface slope at any point in this
geometry-independent region can be used as a dynamic contact angle in a well-posed
boundary value problem.

Dussan V. et al. (1991) developed a model for the interface shape near the contact
line formed by a soid entering a large liquid bath. This model is only valid near the
moving contact line where geometry-free viscous and static-like contributions both
play a role. Although the model does not apply in the outer or macroscopic region, it
might be appealing to use it to construct the whole interface shape formed in the gap
between two parallel plates or in a capillary tube. This path was pursued by Boender,
Chesters & van der Zanden (1991) for liquid displacing air (advancing motions) and by
Chesters & van der Zanden (1993, referred to herein as CZ) for air displacing liquid
(receding motions).

In this paper we examine the receding fluid mode in detail using an approach similar
but not identical to that of CZ. We discuss the difference in physical situations arising
when fluid advances or recedes against a gas of negligible viscosity. The model
examined here shows that, when Ca' 1, receding motions are qualitatively different
from and have a dynamic behaviour much richer than advancing motions. Our model,
presented in §2, shows the development of a liquid layer left behind when the liquid
recedes above a critical speed as illustrated in figure 4. In §3 we discuss the
characteristics of the liquid layer, and state our conclusions in §4.

2. Formulation and solution

A simplified expression describing a dynamic meniscus in a capillary tube of radius
a in the limit of zero gravity (or vanishingly small Bond number Bd3 ρga#}σ, where
ρ is the density, g the acceleration due to gravity and a the tube radius) is the following
ad hoc version of the normal component of the dynamic boundary condition (i.e. the
balance of surface tension by the normal stresses exerted by the fluid on the fluid–air
interface) :

1

1®x

d[(1®x) cos (θ)]

d(1®x)
¯Ca

2 sin#(θ)

θ®sin (θ) cos (θ)

1

x
B, (1a)

subject to boundary conditions

θ¯π}2 at x¯ 1, (1b)

θ¯ θ* at x¯x*, (1c)
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F 1. Coordinate system used in this study and qualitative sketch of static, advancing and
receding shapes. The region of viscous deformation is greatly magnified. The two dynamic contact
angles are such that the macroscopic dynamic shapes coincide with a static shape with contact angle
θ
s
.

where x3 1®r, with r the radial coordinate measured perpendicularly away from the
centreline, made dimensionless with the tube radius ; θ is the angle between the tangent
to the meniscus and the tube wall measured through the liquid, and B is a constant
whose value is part of the solution to (1a–c) (see figure 1).

The different terms of (1a) are as follows. The left-hand side is the curvature of an
axisymmetric meniscus in a capillary tube. The first term on the right-hand side is the
viscous contribution to the normal stress. It arises in the context of a formal asymptotic
expansion valid in the intermediate region, where viscous and surface tension forces
balance to lowest order as CaU 0 (Hocking & Rivers 1982; Pismen & Nir 1982; Cox
1986). The constant B equals the static curvature in the absence of viscous effects and
corresponds to the static part of the normal stress on the interface. This contribution
should be important near the tube centre when Ca' 1.

Boundary condition (1b) states that the slope of the meniscus is continuous at the
centreline; whereas (1c) plays the role of a contact angle, θ*, applied at a non-zero
distance from the wall, x*. Because of the singularity discussed above, the contact
angle cannot be imposed at the moving contact line (x¯ 0). Following CZ, we adopt
x*C e−"&, which is consistent with a tube radius of a few millimetres and a cut off of
a few Angstroms next to the solid.†

At Ca1 0, equation (1) is strictly valid only very near the contact line, where x' 1
and the viscous normal stresses are given by the flow in a wedge (Moffatt 1964; Cox
1986). Nevertheless, (1) is a good approximation for 0!x! 1 in the limit CaU 0 as
the 1}x decay of the viscous term confines its importance to the close vicinity of the
contact line, with a small error introduced near the tube centre.

One way of solving (1) is to eliminate B by differentiating with respect to (1®x). The
only caveat is that, since the interface shape θ is itself a function of x, one needs to
apply the chain rule when differentiating the θ-dependent coefficient of Ca in (1a).
Another way – which we have adopted here – would be not to eliminate B and to solve

† While in principle a contact angle can be imposed at any point on the interface, not all parts of
the interface shape are suitable for imposing a contact angle material property. A material dynamic
contact angle must be applied very near the moving contact line where the interface is geometry
independent. Thus, in order for θ* to act as a material boundary condition in (1), its location x* must
lie in the region where the viscous interfacial deformation is much larger than the static contribution,
B. Many theoretical investigators have chosen x* to be of molecular dimensions (CZ).
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the problem as given in (1a–c). In our calculations, we fix B and integrate (1a) directly
as an initial value problem subject to θ¯π}2 at x¯ 1, using a fourth-order
Runge–Kutta formula. (All of our calculations are accurate to at least five decimal
figures.) For each B, we then get θ* from the solution as the slope at x¯x*. Thus, the
macroscopically observable shape described by B is set by the contact angle θ* (a
dynamical material property, possibly dependent on U ) and by Ca.

3. Results and discussion

Figure 2 shows the relation between contact angle θ* and the centreline meridian
curvature, η

c
(3dθ}dx at x¯ 1) for a static meniscus and for several advancing

(Ca" 0) and receding (Ca! 0) motions. In a capillary tube, η
c
and B are related by:

η
c
¯ "

#
(BCa4}π). When the meniscus is static, i.e. Ca¯ 0, the meniscus is circular and

the contact angle is related to the curvature by θ*¯ cos−" (η
c
). When the meniscus is

in motion, viscous deformation near the contact line alters this relationship. In figure
2, the lines of θ* �s. η

c
in advance approach the static curve (Ca¯ 0) uniformly as

CaU 0+, while the lines in recession do so only over a certain range of θ* as CaU 0−.
(The  and ® superscripts denote the approach to zero from above and below,
respectively.) This marks a fundamental difference between advancing and receding
motions in the model of equation (1).

To understand this difference we must discuss the viscous deformations for each
motion. This difference comes from the fact that the curvatures from viscous forces in
advancing and receding motions have opposite signs. We begin with the advancing case
because it has the simpler regime for the Ca values studied.

When the meniscus advances (Ca" 0), viscous forces very near the contact line open
the angle between the fluid–fluid interface and the wall above the angle that would exist
in a purely static interface with the same contact angle θ*. Far from the contact line,
as viscous forces become negligible, the interface shape enters the macroscopic static-
like region. At this point, the advancing interface has a larger slope θ than a wholly
static interface with the same contact angle θ*. Figure 3 illustrates this with one static
and several advancing shapes, all having a 30° contact angle. The central consequence
of the viscous deformation in advance is that the centreline curvature of the meniscus
is always smaller than that of a static interface with the same contact angle (figure 3),
implying that in advance η

c
is always ! 1 for any θ*& 0.

All advancing shapes (but not all receding shapes, as we discuss below) have the
feature that the viscous deformation is confined to a microscopic region near the
contact line. To the eye one perceives an apparent contact angle, θ

app
3 cos−"(η

c
)" 0,

where η
c
is the curvature of the macroscopic static-like meniscus (see dashed lines in

figure 3). Thus, the static-like macroscopic advancing meniscus appears to intersect the
tube wall at a well-defined (albeit not the actual) contact line (figure 1). Even though
the viscous deformation is microscopic, it can be so drastic as to change the sign of the
interface curvature. For example, for any fixed θ*! 90°, there exists a Ca beyond
which the centreline curvature is negative, i.e. the naked eye perceives an apparent
contact angle " 90° (figure 2 and line with Ca¯ 0.07 in figure 3). It is precisely because
the macroscopic menisci have a well-defined apparent contact angle which approaches
the static value as CaU 0+ that the θ* �s. η

c
lines in figure 2 approach the static line

uniformly in advance as CaU 0+.
Receding motions are more complex than advancing ones at low Ca. When the

meniscus recedes (Ca! 0), the direction of viscous deformation near the moving
contact line is opposite to that in the advancing case. Thus, viscous deformation in
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F 2. Interface slope, θ*, near the contact line at x*¯ e−"&, �s. centreline meridian curvature for
various Ca in advancing and in receding modes: ——, this work; – – –, CZ; . . . . . . . . . , asymptotic
analysis, Ca¯®0.1. The asymptotic analysis is indistinguishable from the model for the other Ca
values shown. Point E corresponds to figure 4(a) and to curve 2 in figure 5.

recession closes the angle, θ, between the dynamic interface and the solid relative to a
wholly static interface with the same contact angle θ*. As a consequence, the slope θ
of a receding meniscus as it enters the static-like region far from the contact line is
smaller than that of a static interface with the same contact angle (figure 3).

This opposite direction of the viscous effects makes receding motions dynamically
richer than advancing ones. Figure 2 shows that the lines of θ* �s. η

c
in recession hug

the static line Ca¯ 0 as CaU 0− only when θ* is more that some critical value θ$
crit

(figure 2). θ$
crit

corresponds to η
c
C 1, i.e. a 0° apparent contact angle.

Thus, recedingmenisci have tworegimesdependingonwhetherθ*" θ$
crit

orθ*! θ$
crit

.
The first regime, characterized by θ*" θ$

crit
(η

c
% 1), is not a special case. In fact,

it is analogous to the advancing case in that the viscous deformation is confined to a
microscopic region near the contact line, and the naked eye perceives the macroscopic
part of the meniscus as intersecting the tube wall with a well-defined contact angle θ

app

(see e.g. point D in figure 2 and line D in figure 3). The second regime, characterized
by θ*! θ$

crit
(η

c
" 1), is unique to receding motions. Contrary to η

c
! 1, here a static

meniscus with curvature η
c
" 1 cannot intersect the tube wall because η

c
" 1 corre-

sponds to a circularmeniscuswith radius ! 1, i.e. smaller than the tube radius. Since this
leaves a ‘gap’ between the static-like region and the wall, no well-defined θ

app
can exist.

Our model shows that receding menisci with θ*! θ$
crit

are special in that they can
sustain centreline curvatures η

c
" 1. This ability is entirely due to the direction of

viscous deformation in recession which bridges the ‘gap’ between the wall and the
static shape with η

c
" 1. The nature of the interface deformation in recession with

θ*! θ$
crit

(η
c
" 1) is fundamentally different from that of the deformation in advancing

menisci and in receding menisci with θ*" θ$
crit

because, in order to bridge this gap,
viscous effects must necessarily extend into the macroscopic scale. The ‘bridge’
between the quasi-static meniscus and the tube wall appears in the form of a thin,
usually long, liquid layer nearly parallel to the tube wall, and is characterized by angles
θC 0 (figure 4).
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F 3. ——, Advancing (Ca" 0), static (Ca¯ 0) and receding (Ca! 0) menisci with contact
angle θ*¯ 30°. – – –, Static shapes having the same centreline curvature as the corresponding dynamic
shapes. (a) Semi-log scale shows viscous region in detail ; (b) linear scale shows macroscopic region
in detail. The numbers denote Ca. The letters A–D correspond to the points with the same letter in
figure 2.

For each Ca! 0, the layer length increases with θ$
crit

®θ*. Figure 5 shows the
dynamic shapes for Ca¯®0.001 at contact angles, θ*, such that η

c
¯²0.98, 1.1, 1.3´,

together with the static shapes corresponding to each η
c
. When θ*¯ 27° (η

c
¯ 0±98) the

viscous deformation is confined to a very small region near the wall and a liquid tail
does not form. As discussed above, this occurs with all advancing motions and with
those receding motions for which η

c
% 1. In contrast, when θ*¯ 25.64° (η

c
¯ 1.1), a

layer with length C 2 develops, whereas when θ*¯ 25.4° (η
c
¯ 1.3) the layer length is

C 13 (figure 4). The sensitivity of the layer length to the contact angle θ* is very high
and increases as CaU 0−.

When a layer develops, viscous effects penetrate well into the tube. For example,
when η

c
¯ 1.3 (point E in figure 2 and curve 2 in figure 5), the liquid tail extends into

at least 23% of the tube radius owing to the viscous term in (1a). A static-like meniscus
arises for 0.23#x! 1. At xC 0.23 (¯ 1®1}η

c
), the static-like meniscus ceases to
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F 4. Dynamic meniscus at Ca¯®0.001: (a) θ*¯ 25.4° (causing η
c
¯ 1.3) ; (b) θ*¯ 25.64°

(causing η
c
¯ 1.1).

exist ; and for x# 0.23 (i.e. between the end of the quasi-static shape and the wall), the
liquid tail develops nearly parallel to the wall. This layer corresponds to the portion of
line 2 in figure 5 where θC 0. The transition at xC 0.23 is smooth despite its sharp
appearance in figure 5. In the range of x where the quasi-static meniscus exists, θ
increases very quickly and viscous effects are virtually zero.

Although viscous effects appear at x as large as 0.23, viscous forces deform the
interface significantly only for x! 0.05, where the viscous term balances the curvature
in (1a) to meet the required value of θ*. Most of the action of viscous forces in
0.05!x! 0.23 is to develop a liquid layer nearly parallel to the wall. In this nearly
parallel portion, the terms on the right-hand side of (1a) add up to almost zero so that
the shape behaves as θC (®3Caz}B)"/# for θ' 1 and z( 1, where z is the axial
distance from the contact line. Only when the layer thickness is small enough, i.e. after a
long tail has developed, does the final deformation meeting the desired θ* take place.
The presence of this ‘similarity ’ region explains the increasingly high sensitivity of the
layer length to the contact angles as CaU 0−.

The picture that emerges from figure 5 is that, when θ*! θ$
crit

, essentially the same
basic liquid layer shape (with minuscule variations in θ* but significantly different
lengths) gives rise to all macroscopic menisci with η

c
" 1. In order to meet the quasi-

static meniscus, the layer adjusts its own length in response to very small variations in
θ*. Thus, based on this model, the layer must be longer the closer Ca is to zero (for
fixed η

c
" 1), or the smaller the value of θ* (for fixed Ca) (refer to figure 4).

Solutions of (1) for receding menisci (Ca! 0) have the peculiarity that, for
θ*! θ$

crit
, the curves η

c
�s. θ* do not uniformly approach the static case, Ca¯ 0. In fact,

for CaU 0− : (i) the transition in the curves η
c
�s. θ* gets progressively sharper ; and (ii)

the thin liquid layer gets progressively longer for fixed θ*®θ$
crit

! 0. This strongly
suggests that the limit CaU 0− of (1) is singular, with a ‘boundary layer ’ thickness that
gets smaller as CaU 0−. However, the ‘ long-z ’ scaling derived from (1a), θCCa"/#, is
incompatible with the standard lubrication scaling, θCCa"/$, which raises questions as
to the proper asymptotic treatment of this model.

In all cases we found that for each θ in recession there exists only one value of η
c

consistent with a steady-state solution. This contrasts with CZ’s results (dashed line in
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F 5. Interface shapes, θ, �s. distance from the wall : (a) semi-log scale shows viscous region in
detail ; (b) linear scale shows macroscopic region in detail. Shapes are for three values of the contact
angle θ* causing different η

c
: curve 1, η

c
¯ 0.98; 2, η

c
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c
¯ 1.1. ——, Dynamic

(Ca¯®0.001) ; – – –, static, same η
c
as dynamic. At η

c
¯ 1.3, the static shape is indistinguishable from

the quasi-static part of the dynamic shape.

figure 2), who found that : (a) below a certain θ* (point F, figure 2) no solution exists,
and (b) two receding menisci can have different shapes (i.e. different η

c
) with the same

contact angle θ* (compare points G,H with our results G«,H«). In order to eliminate
B from the problem, CZ differentiated (1) with respect to x, neglecting a term that
arises because θ¯Θ(x). This term is always negligible except when Ca! 0 and
θ*! θ$

crit
(η

c
" 1), which invalidates CZ’s results for η

c
" 1. Thus, it remains to

be determined whether, in recession and with θ*! θ$
crit

, there exists another critical
value of θ* below which: (a) no steady solution can exist, or (b) a steady solution exists
but is unstable. The cut-off Ca for the existence of solutions to the model equation
appears to be the value of Ca! 0 at which the curvature at the centre of the tube is
infinite. Our calculations never reach this point, where the model (1) may well be
invalid. This cut-off is different from the one implied in asymptotic models, given in
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figure 2 roughly by the kink of the Ca! 0 lines (Cox 1986). To lowest order, the
asymptotic matching process generates a boundary condition for the static-like
macroscopic meniscus in the form of an apparent contact angle. This apparent contact
angle is necessarily & 0 (Dussan V. et al. 1991; Cox 1986), hence a centreline curvature
η
c
" 1 is meaningless in the context of matched asymptotics. To the right of the kink,

however, solutions to the model equation continue to exist but the character of the
meniscus changes through this kink.

Equation (1) is the ad hoc extension of the standard matched asymptotic approach
for a capillary tube geometry. Thus, we expect calculations based on (1) to be a good
approximation when rCar' 1 as long as η

c
% 1, i.e. for advancing menisci at any θ*,

and for receding menisci at θ*" θ$
crit

(figure 2). Equation (1) should also work for θ*
just below θ$

crit
, when the layer near the wall has not yet developed. In fact, (1) agrees

well with Lowndes’ (1980) finite element calculations of advancing menisci and
with approximate solutions obtained using matched asymptotic expansions for
0!Ca% 0.07 (Dussan V., personal communication).

4. Conclusions

We have presented an approximate model describing the shapes of advancing and
receding liquid–air menisci in a capillary tube. The model is strictly valid as CaU 0,
very near the moving contact line where the term proportional to Ca in (1a) describes
viscous deformation (Chen et al. 1995). The approximation of the model consists of
using the same model throughout the tube.

In the limit rCarU 0, the model agrees with experimentally verified asymptotic
analyses for any θ* in advance and for θ*" θ$

crit
(i.e. η

c
# 1) in recession (figure 2)

(Dussan V. et al. 1991; Marsh et al. 1993; Chen et al. 1995). Under these conditions,
the term proportional to Ca in (1a) is important only where x is small, and the model
is consistent with asymptotic analyses. However, when a long tail of liquid is left
behind in recession, this term appears to play a role even when x is not small, but the
usual asymptotic analyses cannot address this regime. This opens the possibility that,
under conditions such that a tail forms, additional terms of O(Ca), which do not arise
in current asymptotic treatments, might be important.

What is, then, the physical relevance of those combinations ²θ*,Ca´ producing
η
c
" 1? One should recall that (1) is strictly incorrect. However, it can be a good

approximation when rCar' 1 provided: (a) the viscous effects it predicts are confined
to a very small region near the contact line where the coefficient of Ca in (1a) is valid ;
or (b) in the liquid layer Ca' θ#, a condition for the validity of the viscous term in (1a)
met by all of our calculations including those where a tail develops. For each fixed
Ca! 0 and θ*! θ$

crit
, the model has a unique solution and predicts the qualitatively

correct development of a liquid layer next to the solid. The length of the tail increases
as CaU 0− or as θ* decreases. The model also predicts Ca

crit
, such that the liquid layer

of the receding fluid develops next to the wall for fixed θ* and Ca!Ca
crit

! 0.
The layer calculated in this study is not the same as the layer of ‘ infinite length’ and

uniform thickness studied by Bretherton (1961). This layer with uniform thickness
does not have an explicit end. If we were to conceive its end, it might have a region of
decreasing thickness and a contact line pinned to the solid. This should make the whole
liquid layer move as a rigid body at the solid velocity. Considered globally, this flow
is unsteady because the layer length increases in time. Another possible end for the
infinite layer is a region near the contact line where fluid accumulates near a contact
line fixed in space. This situation is also unsteady because a ridge thicker than the
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Bretherton layer must propagate from the contact line down to the bulk fluid. Our
calculations, on the other hand, are steady solutions. Contrary to the scenarios
described above, the net flow across any section of the layer is zero in this study, hence
both the layer length and shape are constant in time. It remains to determine the
relation (or lack thereof) between the lubrication layer produced in our calculations
and the class of lubrication layers of Bretherton.

I would like to acknowledge S. Garoff, E. B. Dussan V. and A. Bose for their always
insightful comments. I would also like to acknowledge NASA’s financial support
under grant No. NAG3-1390.
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